Nucleosynthesis and Chemical Evolution of Oxygen

Bradley S. Meyer
Department of Physics and Astronomy
Clemson University
Clemson, SC 29634

Larry R. Nittler and Ann N. Nguyen
Department of Terrestrial Magnetism
Carnegie Institute of Washington
Washington, D. C. 20015

Scott Messenger
Robert M. Walker Laboratory for Space Science
NASA Johnson Space Center
Houston, TX 77058

Abstract. Of the elements strictly synthesized in stars, oxygen is by far the most abundantly produced. We review the nucleosynthesis and Galactic chemical evolution of this important element. We then review its isotopic composition in presolar grains recovered from primitive meteorites and from interplanetary dust particles. As we describe, knowledge of these isotopic compositions provide important constraints on theories of nucleosynthesis, stellar evolution, and Galactic chemical evolution.

I. INTRODUCTION

The isotopes of oxygen are crucial diagnostics of nucleosynthesis and Galactic chemical evolution. This is due in large part to oxygen’s high abundance. It is the third most abundant element in the Galaxy, though considerably less abundant than hydrogen and helium (primarily produced in primordial nucleosynthesis). According to the compilation of Lodders (2003), oxygen’s abundance is nearly equal to that of all the other heavy elements (elements with atomic number greater than that of helium) combined. This high abundance means that it is readily observable in the atmospheres of stars. It also means that oxygen is a dominant player in chemistry taking place in stellar outflows, in the interstellar medium, and in the early Solar System.

The abundance of oxygen is dominated by that of 16O, which is the third most abundant isotope in the Galaxy. According to the Lodders (2003) compilation, 16O makes up nearly one percent of the mass of the Solar System. The other stable isotopes of oxygen are considerably less abundant. 18O is the 25th most abundant isotope in the Solar System, with an abundance about 0.2% that of 16O. 17O is the 34th most abundant isotope in the
Solar System, and its abundance is 0.03% that of ^{16}O. Despite the low relative abundances of ^{17}O and ^{18}O, they are still sufficiently abundant that they can be measured in stellar atmospheres. As we shall also see, oxygen isotopic abundances are also readily measured in presolar grains in meteorites and interplanetary dust particles. These measurements provide key constraints on nucleosynthesis and stellar evolution.

Also contributing to oxygen’s importance as a diagnostic is the fact that its three stable isotopes are predominantly made in different burning epochs during the life of a star. As we shall see below, ^{17}O is predominantly made in hydrogen burning, ^{18}O is predominantly made in the early stages of helium burning, and ^{16}O is made in the later part of helium burning. Thus, the isotopic composition of a stellar atmosphere or a presolar grain provides clues to the stellar region in which the major part of the material was synthesized.

Finally, a third significant aspect of oxygen’s role as a diagnostic of nucleosynthesis and Galactic chemical evolution is the primary versus secondary nature of the different isotopes. ^{16}O is a primary isotope, that is, an isotope that can be synthesized in a star initially composed only of hydrogen, while ^{17}O and ^{18}O are secondary isotopes, which means their formation requires pre-existing seed nuclei from previous stellar generations. As a consequence, the abundance of ^{16}O relative to those of ^{17}O and ^{18}O changes with time in the Galaxy’s history. Measurements of oxygen abundances in stars or in presolar grains of different ages can thus provide important clues about the chemical evolution of the Galaxy.

The goal of this paper is to review the nucleosynthesis and chemical evolution of the isotopes of oxygen and the manifestations of these processes in astronomical and cosmochemical samples. We begin in section II with a review of the nucleosynthesis of oxygen isotopes in the different burning stages in stars and follow up with an analysis of the oxygen isotopic abundances from high-mass and low-mass stars. We then turn in section III to a review of the key issues of the Galactic chemical evolution of the oxygen isotopes. In section IV, we review some of the implications of oxygen data on presolar grains for nucleosynthesis and chemical evolution. In section V, we present some concluding remarks.

II. NUCLEOSYNTHESIS OF THE ISOTOPES OF OXYGEN

As a whole, our Universe has only about 10^{-10} nucleons for every photon. By contrast, the corresponding number in stars is close to unity. The low nucleon-to-photon ratio in the early Universe strongly inhibited build-up of heavy nuclei, and, as a consequence, primordial nucleosynthesis did not produce any oxygen. The oxygen present in our Solar System was thus made in stars. In this section we first review oxygen nucleosynthesis in

1 The interested reader may wish to explore the Solar System abundances and their rankings with the Webnucleo online solar abundances tool available at

http://nucleo.ces.clemson.edu/home/online_tools/solar_abundances/0.1
the main stellar burning stages. We then analyze the oxygen yields predicted for high-
mass and low-mass stars, as well as for novae and Type Ia supernovae.

Production of Oxygen in Mainline Stellar Burning Stages

Hydrogen Burning. Stars shine. As a consequence, they radiate away energy. To compensate this energy loss and maintain their pressure support against gravitational contraction, stars convert nuclear energy into thermal energy by fusing lighter nuclei into heavier ones. This nuclear burning proceeds through a series of stages in which the ashes of one stage serve as the fuel for the next. This sequence of burning stages progresses until either electron degeneracy replaces thermal pressure to support the star or the star burns the nuclei all the way to iron from which no more nuclear energy can be extracted by fusion.

The first nuclear fuel available to stars is hydrogen, which stars burn into 4He. Stars with the mass of the Sun or less burn hydrogen at relatively low temperatures (10^{-20} million K) via the so-called PP chains. Because the PP chains only involve isotopes of hydrogen, helium, lithium, and beryllium, these reaction chains do not affect the stellar abundance of oxygen. In contrast, stars more than about 1.2 times the mass of the Sun attain somewhat higher temperatures and can thus burn hydrogen by the more efficient process known as CNO burning. In this burning, the production of 4He from 1H is catalyzed by two coupled cycles involving isotopes of carbon, nitrogen, and oxygen. In the CN cycle, the reaction sequence is 12C + 1H \rightarrow^{13}N + gamma (here gamma represents energy released during the reaction as a gamma ray which subsequently deposits its energy locally), 13N \rightarrow^{13}C + e^+ + neutrino, 13C + 1H \rightarrow^{14}N + gamma, 14N + 1H \rightarrow^{15}O + gamma, 15O \rightarrow^{15}N + e^+ + neutrino, and 15N + 1H \rightarrow^{12}C + 4He. This last reaction closes the cycle. Roughly 0.1% of the time, however, 15N does not return to 12C but rather captures a proton to become 16O: 15N + 1H \rightarrow^{16}O + gamma. This commences the NO cycle: 15N + 1H \rightarrow^{16}O + gamma, 16O + 1H \rightarrow^{17}F + gamma, 17F \rightarrow^{17}O + e^+ + neutrino, 17O + 1H \rightarrow^{14}N + 4He. It is the NO cycle that predominantly involves oxygen isotopes in hydrogen burning, although the minor pathway 17O + 1H \rightarrow^{18}F + gamma, 18F \rightarrow^{18}O + e^+ + neutrino, 18O + 1H \rightarrow^{15}N + 4He brings 18O into play as well.

During CNO burning, the slow reaction is 14N(p,gamma)15O. This means that CNO cycling tends to convert the initial abundances of carbon and oxygen into 14N. This is evident in Figure 1, which shows the mass fractions of various species during a hydrogen burning calculation with the Clemson nucleosynthesis network code (Jordan and Meyer 2004). The calculation was run at a constant temperature of 30 million K and a density of 10 g/cm3, conditions fairly typical of hydrogen burning in the cores of massive stars, and began with a solar abundance distribution (Anders and Grevesse 1989). As is evident, CN burning converts 12C into 14N early in the burning while the reaction 18O + p \rightarrow^{15}N + 4He quickly depletes the initial 18O and involves O in the main CNO cycling. As time progresses in the calculation, the 17O abundance rises due to proton capture onto 16O and achieves a maximum enrichment of about a factor of ten relative to its initial abundance. After about 10^4 years, however, the 17O attains a steady state as destruction via 17O(p,4He)14N balances the production from 16O. Finally, after 10^6 years, the full CNO
bi-cycle achieves a steady state. The 1H converts into 4He and the oxygen isotopes convert into 14N.

After complete CNO burning, 4He and 14N are enriched while 12C and 16,17,18O are all depleted (Figure 1). Nevertheless, if the CNO cycling is not complete or the burning happens at a lower temperature, the matter may be enriched in 17O and depleted in 16,18O, as is the case in Figure 1B at a time of 10^6 years. This is typically the case in the envelopes of stars that have experienced dredge up (mixing) of matter from a hydrogen burning shell.

Helium Burning. After the star has burned its hydrogen into helium, the next available fuel is the 4He. Due to the lack of stable isotopes with mass number five and eight, the helium burning proceeds via the triple-alpha process, which may be viewed as the reaction 4He + 4He + 4He \rightarrow 12C + gamma. Helium burning typically occurs at temperatures around 100 to 300 million K and densities near 1000 g/cm3. Figure 2 shows the evolution of mass fractions relative to solar values in a helium burning calculation at a temperature of 250 million K and a density of 1000 g/cm3 and using as the initial abundances the final yields from the previous hydrogen burning calculation.

In the initial stages of helium burning, the abundant 14N captures 4He to produce 18F, which decays to 18O, thereby strongly enriching 18O relative to 16O and 17O. The 18O itself then captures another 4He, which depletes the 18O and creates 22Ne. At the high temperature of the calculation in Figure 2, this conversion of 14N into 22Ne occurs within the first 0.1 years. As this is occurring, the triple-alpha reaction is also converting 4He into 12C. Beginning at about one year, the 12C becomes sufficiently abundant that it can capture 4He to become 16O. This strongly enriches 16O relative to the other oxygen isotopes. The 12C/16O ratio resulting from helium burning determines the nature of the subsequent carbon burning in the star, which, in turn, determines the whole subsequent shell structure of the star (e.g., El Eid et al. 2004). For this reason, the reaction 12C(4He, gamma)16O, which is not yet fully characterized in the laboratory, is the subject of intense experimental study. It is also worth noting that the reaction 16O + 4He \rightarrow 20Ne + gamma does not occur at helium burning temperatures because of the lack of an appropriate resonance at helium burning temperatures. The 4.969 MeV state in 20Ne would make an ideal compound nucleus in helium burning, but the spin and parity are not right, so the reaction does not occur (e.g., Clayton 1968). Alpha capture ceases at 16O, and, as a consequence, 16O is in fact the dominant product of helium burning.

From Figure 2, it is clear that there is a phase in helium burning in which 18O is enhanced while 16O and 17O are depleted. As the burning progresses, however, the 18O converts to 22Ne and the 16O becomes the dominant oxygen isotope. Because the 16O so greatly dominates the other oxygen isotopes after helium burning, we will henceforth neglect these minor isotopes in the subsequent discussion.

Carbon Burning. The next stellar burning stage is carbon burning. Carbon burning typically occurs at temperatures near 0.9 billion K and densities near 10^5 g/cm3. It predominantly converts 12C into 20Ne and 24Mg via the reactions 12C + 12C \rightarrow 20Ne +
He and $^{12}\text{C} + ^{12}\text{C} \rightarrow ^{24}\text{Mg} + \text{gamma}$. At carbon burning temperatures, there are resonances in the $^{16}\text{O} (^{4}\text{He},\text{gamma})^{20}\text{Ne}$ reaction available that allow the reaction to proceed efficiently. This means that the ^{16}O left after helium burning is depleted somewhat during carbon burning due to capture of ^{4}He produced by the main carbon burning reactions.

Neon Burning. After carbon burning, the star burns neon. This effectively occurs in a two step process. The first reaction is $^{20}\text{Ne} + \text{gamma} \rightarrow ^{16}\text{O} + ^{4}\text{He}$. This reaction is endothermic. The ^{4}He produced, however, then captures on another ^{20}Ne to produce ^{24}Mg. This latter reaction is sufficiently exothermic that the net reaction $^{20}\text{Ne} + ^{20}\text{Ne} \rightarrow ^{16}\text{O} + ^{24}\text{Mg}$ is exothermic. Clearly neon burning replenishes some of the ^{16}O depleted during carbon burning.

Oxygen and Silicon Burning. Once neon burning is complete, the next burning stage is that of oxygen. The dominant reaction is $^{16}\text{O} + ^{16}\text{O} \rightarrow ^{28}\text{Si} + ^{4}\text{He}$. This phase clearly depletes the oxygen. After oxygen burning, the star will burn ^{28}Si into ^{56}Fe. The effective reaction is $^{28}\text{Si} + ^{28}\text{Si} \rightarrow ^{56}\text{Ni} + \text{gamma}$ followed by decay of ^{56}Ni to ^{56}Fe; however, the burning actually occurs by burning through quasi-equilibrium clusters (e.g., Woosley et al. 1973). Again, oxygen is little involved in this burning, except as a species involved in the net disintegration of ^{28}Si (e.g., Bodansky et al. 1969).

Stellar Explosion. Stars that are able to evolve all the way to silicon burning develop iron cores. At this point, the nuclei are in the state with the highest nuclear binding; hence, any rearrangement of their abundances cannot release energy. This means that the star can no longer burn fuel to maintain its pressure against gravity and the stellar core collapses homologously. The inner core collapses subsonically. Once it attains nuclear matter densities, the collapse halts and the core bounces. The outer core, however, collapses supersonically and therefore does not receive the signal to stop collapsing. It crashes onto the already collapsed inner core. This highly non-adiabatic effect generates a shock wave that propagates out through the outer layers of the star. As the shock passes through the stellar layers, it heats and compresses them. This causes further burning (known as explosive burning). For a review, see, for example, Woosley et al. (2002).

The modification of the oxygen isotopes due to explosive burning is largely confined to the inner layers of the star. In particular, explosive oxygen burning will deplete the ^{16}O in ^{16}O-rich layers and explosive neon burning will enhance the ^{16}O in the ^{20}Ne-rich layers. By the time the shock reaches the ^{12}C-rich and ^{4}He-rich regions, however, the post-shock temperatures and densities do not lead to significant changes in the pre-supernova oxygen abundances.

Analysis of the Oxygen Yields from Massive Stars

Armed with an understanding of the nucleosynthesis in the mainline burning stages of stellar evolution, we may now analyze the yields from massive stars, that is, stars with a mass greater than about ten solar masses. Such stars do not develop degenerate cores
during their evolution and their cores are thereby able to burn their nuclei all the way to iron.

To analyze the yields from massive stars, we consider a single model. While this is only one particular model, its yields are fairly representative of the ejecta from any star more than ten times the mass of the Sun. Chemical evolution models using detailed stellar model yields have long shown that the Galaxy’s supply 16O is dominantly from massive stars (e.g., B. M. Tinsley 1980—“Evolution of the Stars and Gas in Galaxies”, Fundamentals of Cosmic Physics, vol. 5, pp. 287-388). Because 16O so dominates the oxygen abundance, massive stars are thus nearly the sole contributors to the Galaxy’s inventory of this important element even though they comprise only a few percent of the stars born in any stellar generation. Massive stars also dominate the Galactic production of 18O (e.g., Timmes et al., 1995). Low-mass stars only dominate the Galactic synthesis of the low-abundance isotope 17O.

The model presented here is that of Meyer (2005) using the stellar evolution code of The et al. (2000) and El Eid et al. (2004) but with coupled nuclear burning and convection using routines written by Jordan et al. (2004). The star began with a mass 25 times greater than that of the Sun. By the end of its life, it had lost 3.4 solar masses of material due to stellar winds. The model ran through silicon burning. Energy was then deposited in the core. Shock propagation and the concomitant explosive burning were followed with the appropriate computer codes.

The final yields (after stellar explosion) of the isotopes of oxygen relative to their initial abundances are shown in Figure 3. The abscissa is the so-called Lagrangian mass coordinate M_r. The value of M_r indicates the mass contained within a given spherical shell in the star. For example, $M_r = 0$ is the center of the star. $M_r = M$, where M is the total mass of the star, is the star’s surface. $M_r = 10$ solar masses locates a spherical shell that contains 10 solar masses inside. The Lagrangian mass coordinate is convenient because, although the radius of a shell expands or contracts as the star evolves, the mass it contains does not.

As Figure 3 shows, the abundances of the oxygen isotopes vary dramatically inside the stellar ejecta. Particularly noteworthy is the fact that abundances are uniform over certain mass ranges. This indicates mixing within the stellar regions. For example, the abundances of 16O, 17O, and 18O are uniform from $M_r \approx 7.8$ to 21.6 solar masses. This represents the outer envelope of the star, which stretches from what was the hydrogen-burning shell to the stellar surface. The strong convection in the envelope prior to the explosion homogenized the abundances. Similarly, the helium burning shell in the star extends from about $M_r \approx 5.5$ to 7.3 solar masses.

It is also worth noting that stellar burning proceeds through a sequence of core and shell burning. In particular, a given burning stage commences in the center of the star since the temperature is generally highest there. If the energy release is strong enough, the burning drives convection. This draws fuel in from throughout the convective core. Once the burning is complete, the fuel for that burning stage is exhausted throughout the
convective core. The star will then contract until the next burning stage begins. Shell burning occurs when the region outside the formerly convective core contracts and heats to the point that the appropriate nuclear fuel can ignite.

With these preliminaries in mind, we may trace the star’s evolution from the oxygen isotopes in the star. It is convenient to consider major zones in the stellar ejecta and use the terminology from Meyer, Weaver, and Woosley (1995) to label these zones by the most dominant elemental abundances. We work our way in from the surface of the star. The H envelope stretches from $M_r = 7.8$ to 21.6 solar masses. In the H envelope, the 17O is enriched and the 16O and 18O are depleted. As the star evolved past the main sequence phase of its life, convection began in the envelope and reached down to matter that had experience partial burning of hydrogen by the CNO cycle. As a consequence, the abundances throughout the envelope look similar to the early stages of CNO burning in Figure 1 with modest enrichments in 14N and 17O. It is also noteworthy that mass loss begins as envelope convection commences and carries away some products of CNO burning prior to the explosion.

The He/N zone stretches from $M_r = 7.3$ to 7.8 solar masses. It is a thin radiative (non-convective) shell that was originally part of the convective hydrogen-burning core. Since it largely completed hydrogen burning at the time of stellar explosion, it converted most of its oxygen into 14N, in analogy with the late stages of the single-zone calculation shown in Figure 1, in which all three oxygen isotopes are depleted from their initial abundances.

The He/C zone stretches from $M_r = 5.5$ to 7.3 solar masses. This is the part of the star that had experienced convective core hydrogen burning and was burning helium in a convective shell at the time of stellar explosion. In this zone, the 18O is enriched, and the abundances resemble those in the single-zone calculation in the early stages of the burning. It is worth emphasizing that, because of the convective burning, a 14N that captures a 4He in the burning region is likely to mix out into the non-burning parts of the shell before capturing another 4He. This means that the 18O has to cycle back into the burning region before capturing another 4He to become 22Ne, which lengthens the lifetime of the 18O compared to that in the single-zone calculation. This in turn explains why the convective helium shell can be enriched in both 12C and 18O, even though Figure 2 might suggest that 12C builds up only after the 18O is declining.

The O/C zone contains material from $M_r = 4.5$ to 5.5 solar masses. This is matter that was part of the convective helium burning core but did not partake in convective carbon shell burning. Since this matter completed helium burning, the oxygen is dominated by 16O. Nevertheless, in this particular stellar model, some 17O and 18O are present due to non-convective burning in this region just prior to the stellar explosion.

The O/Ne zone, ranging from $M_r = 3$ to 4.5 solar masses, is a region of the star that experienced convective shell carbon burning. As discussed above, at the temperatures of carbon burning, 16O can capture 4He nuclei released by the carbon burning reactions. This thereby depletes the 16O left over from the previous convective core helium burning.
As is evident from Figure 3, however, this depletion is fairly slight, and the 16O still strongly dominates the oxygen abundances.

In the present stellar model, the O/Si zone ranges from $M_\star \simeq 1.8$ to 3 solar masses. This is the region of the star that experienced shell neon burning. As discussed above, the effective neon burning reaction is $^{20}\text{Ne} + ^{20}\text{Ne} \rightarrow ^{24}\text{Mg} + ^{16}\text{O}$, which increases the 16O slightly.

Finally, inside $M_\star \simeq 1.8$ solar masses in the present model, the star burned its 16O into 28Si and heavier isotopes both in pre-supernova and supernova nucleosynthesis. These regions of the stellar ejecta, the Si/S and Ni zones, are devoid of any oxygen, except for trace amounts produced during the stellar explosion.

In broad summary, the ejecta from a massive star is characterized by an 17O-rich envelope, which contains most of the stellar ejecta, a narrow helium shell enriched in 18O, and the inner regions, which are strongly enriched in 16O. It is important to emphasize that, although it is true that massive stars can eject several solar masses of 16O, the massive star ejects all three O isotopes, and the bulk ejecta are not necessarily 16O-rich.

Low-Mass Stars

Apart from mass loss during pre-supernova evolution, which can be significant, massive stars tend to lose all their mass in a single event, namely, the supernova explosion. In contrast, low-mass stars, ones with mass less than roughly eight solar masses, lose their mass in periodic episodes during their post main sequence phases. It is thus necessary to follow the evolution of the star in detail to understand the ejected oxygen yields. We are brief in our discussion. For more detailed reviews of the evolution of and mass loss from low-mass stars, please see Busso et al. (1999) or Herwig (2005).

The typical evolution of low-mass stars begins, as usual, with core hydrogen burning during main sequence evolution. Once the hydrogen is exhausted, the center of the star contracts, and hydrogen shell burning commences on top of the hydrogen-exhausted core. The star begins to ascend the giant branch in the Hertzsprung-Russell diagram. As the star ascends the giant branch, it grows in radius, and the outer envelope expands and cools. This increases the opacity, and the envelope becomes convective. The convective envelope grows in extent and eventually “dredges up” material that had experienced CNO processing (the “first dredge up”). This enriches the envelope material in 17O and depletes it in 16O and 18O.

The stellar core continues to contract until helium burning ignites. This occurs either under electron-degenerate conditions as a “flash” for stars less than roughly 2 solar masses or non-degenerate conditions and, hence, more quietly for stars of mass greater than ~2 solar masses. After the core has exhausted its helium, the core contracts again and ascends the “asymptotic” giant branch (AGB). At this time, stars more massive than ~4 solar masses experience “second dredge up”, which brings products of hydrogen shell
and helium core burning to the surface. The CNO burning products tend to dominate so that, again, the 17O is enriched.

By this point, the star’s structure is an inert, degenerate C/O core, surrounded by a helium-burning shell, surrounded by a hydrogen-burning shell, surrounded by the stellar envelope. The hydrogen- and helium-burning shells burn alternately in a complicated choreography. Most of the time, hydrogen shell burning occurs quiescently. Eventually, however, the temperature and density rise in the helium-rich region between the C/O core and the hydrogen shell. The helium ignites in a thermal pulse, which drives convection within the helium-rich zone and extinguishes the hydrogen-burning shell. Once the helium burning has ceased, the newly produced carbon and oxygen settle onto the core, and the hydrogen-burning shell reignites. The convective envelope reaches down into matter that has experience helium burning and dredges it up (“third dredge up”) to the surface, thereby enriching it in the helium-burning products, including 16O and 18O, as well as 17O from the hydrogen shell.

The thermal pulses help drive the periodic mass loss from the AGB stars. As the star progresses through multiple thermal pulses, the C/O ratio in the envelope increases as the helium shell nucleosynthesis and third dredge up tend to preferentially add 12C over 16O. Because the oxygen abundance dominated that of carbon initially, the star began with a C/O abundance ratio less than one. The preferential addition of 12C increases the C/O ratio until it becomes a “carbon” star (C/O > 1). Eventually the star’s entire envelope is lost, and only a degenerate C/O white dwarf star is left behind.

While this picture of stellar evolution is largely successful in explaining surface abundances of low-mass stars, certain observational puzzles presented themselves. First, the surface abundance ratio of 12C/13C observed for many red-giant branch stars was lower than predicted by the models. This suggested extra mixing below the conventional convective envelope. Such mixing would bring envelope material into the vicinity of the H-burning shell and allow for some nuclear processing and then transport it back to the surface. This has been termed “cool bottom processing” (Boothroyd et al.1995). In addition to helping to explain the carbon abundance puzzle in low-mass red-giant branch stars, cool bottom processing can also explain the low 18O/16O ratio in certain AGB star atmospheres (Wasserburg et al. 1995, Boothroyd and Sackmann 1999). Another puzzle is the large surface 17O enrichments in the handful of observations of J type carbon stars which cannot be explained by standard low-mass star evolution. The answer may lie in so-called “hot bottom burning”. In this scenario, the convective envelope of a star with mass greater than ~5 solar masses extends down to the H-burning shell so that the envelope material itself experiences H burning, heavily depleting 18O and enriching 17O at the stellar surface (e.g., Boothroyd et al. 1995, Lattanzio et al. 1997). As we shall see in section IV, one generally invokes hot bottom burning and cool bottom processing to explain the oxygen isotopic ratios in certain presolar oxide and silicate grains as well as in stellar atmospheres.

For completeness, it is worth noting that stars in the mass range ~8-10 solar masses do not develop degenerate C/O cores. This means they proceed to core carbon burning.
They then eject their envelopes in a manner similar to lower mass stars and leave behind O/Ne/Mg white dwarf stars.

Novae and Type Ia Supernovae

Novae are thermonuclear explosions that occur when material from a binary stellar companion (main sequence or red giant star) is gradually accreted onto a white dwarf. As the density increases in the outer layers of the white dwarf due to ongoing accretion, nuclear reactions begin to occur. Because these reactions take place under degenerate conditions, a relatively brief thermonuclear runaway occurs, resulting in the optical outburst we know as a "nova". A small amount of processed accreted matter and even some underlying white dwarf material is ejected. Then the system settles down to accrete more material until the next nova outburst.

Although there are many uncertainties in nova modeling, there is reasonably good agreement between nova nucleosynthesis calculations and observed elemental abundances in novae. Novae are not believed to be significant contributors to the Galactic budget of most elements; however, they are probably an important source of some rare isotopes, including ^{12}C, ^{15}N, and of interest here, ^{17}O. Calculations predict ejecta with $^{17}\text{O}/^{16}\text{O}$ ratios 25-2000 times the Solar ratio (José et al. 2004). The ejecta are also typically enriched in ^{18}O, but He burning in massive stars can easily explain the Galactic ^{18}O abundance without requiring a significant contribution from novae.

In some white dwarf-stellar companion binary systems, the central density in the accreting white dwarf can build up to such high temperatures that carbon-burning reactions can ignite. Like the nova outburst, such burning occurs under degenerate conditions but, given the higher temperature sensitivity of carbon-burning reactions compared to those of the CNO bi-cycle relevant for novae, this burning is much more violent. The result is the complete thermonuclear disruption of the white dwarf in what is most likely a Type Ia supernova. Because of the high temperatures attained in a Type Ia event, much of the matter reaches nuclear statistical equilibrium, which means that such supernovae are major contributors to the Galaxy’s supply of iron-group isotopes. Nuclear statistical equilibrium does not favor oxygen, however, so the inner parts of Type Ia’s do not synthesize much oxygen. In the outer layers of Type Ia supernovae for which the burning front is subsonic, considerable ^{16}O can be produced, principally by explosive carbon and neon burning. Nevertheless, given the relative infrequency of Ia events, they probably only contribute at best a few percent to the Galaxy’s inventory of oxygen (e.g., Thielemann et al. 1986).

III. CHEMICAL EVOLUTION OF THE ISOTOPES OF OXYGEN

A fundamental distinction in nucleosynthesis theory is between primary and secondary isotopes, and this distinction has important consequences for the evolution of the oxygen abundances in the Galaxy. A primary isotope is one that can be produced from a star initially composed only of hydrogen. A secondary isotope is one that can
only be made from pre-existing seed nuclei. These pre-existing seed nuclei come from previous generations of stars, hence the name secondary.

The oxygen isotopes provide clear examples of this distinction. ^{16}O is a classic example of a primary isotope. A star composed initially only of hydrogen could form ^{4}He via the PP burning chains. When that ^{4}He burns by the triple-alpha process, the dominant products are ^{12}C (another primary isotope) and ^{16}O. By contrast, ^{17}O and ^{18}O are both secondary isotopes. ^{17}O is made by proton-capture on ^{16}O. This occurs during hydrogen burning. A star initially composed only of ^{1}H would have no ^{16}O during the hydrogen burning to capture a proton. Similarly, ^{18}O traces its origin back to ^{4}He capture by ^{14}N in the early stages of helium burning. As evident from previous discussions, CNO burning converts most of the star’s initial C, N, and O isotopes into ^{14}N because of the slowness of the ^{14}N(p,γ)^{15}O reaction. A star comprised initially only of ^{1}H would not have the C, N, or O isotopes necessary to convert into ^{14}N and, hence, would produce no ^{18}O.

Figure 4 demonstrates the primary vs. secondary nature of the oxygen isotopes. Shown are the results from a suite of stellar evolution and nucleosynthesis calculations by Woosley and Weaver (1995) for a range of initial stellar mass and metallicity. In chemical evolution studies, metallicity is an astronomical term that refers to the mass fraction of isotopes heavier than helium. Early astronomical studies of Galactic abundances and chemical evolution only distinguished between hydrogen, helium, and everything else, and the respective mass fractions were X (hydrogen), Y (helium), and Z (the “metals”). In the Solar System, the mass fraction of “metals” is $Z_\odot = 0.02$ with ^{16}O comprising half that number.

As Figure 4A shows, massive stars with a metallicity 1/10,000 as large as that in the Solar System eject as much ^{16}O as do stars with solar or even twice solar metallicity, which confirms ^{16}O’s status as a primary isotope. The general trend for all metallicities is that the larger the mass of the star, the more ^{16}O it ejects. This reflects the fact that larger stars have larger helium-burning cores; thus, they produce more ^{16}O. The exception to this trend is that some stars in the suite of models with mass greater than 30 times that of the Sun produce less than their lower mass peers. This is not a nucleosynthetic effect—rather it is a consequence of the fact that these models experienced significant fallback during their explosion and formed black holes. The black holes swallowed up much of the ^{16}O, which reduced the ejected yield.

Figures 4B and 4C show the corresponding ejected yields from the suite of stellar models for ^{17}O and ^{18}O. From these plots it is clear that the larger the initial metallicity of the star, the greater the production of ^{17}O and ^{18}O. It is also interesting that, for a given initial metallicity, the yield is only weakly sensitive to initial stellar mass. As we previously saw, the ejected ^{17}O and ^{18}O are produced in shell burning. The size of convective hydrogen and helium burning shells is less dependent on the stellar mass than the size of convective hydrogen and helium cores. This explains the weaker dependence of $^{17,18}\text{O}$ on initial stellar mass than that of ^{16}O.
An important caveat is that the crucial proton-capture reaction rates on 17O have been revised since the calculations shown in Figures 4B and 4C were run. In particular, the preferred values for these reaction rates have increased (Blackmon et al. 1995, Angulo et al. 1999), leading to a decrease in the expected yields of both 17O and 18O from massive stars. In particular, massive star models using the new 17O proton-capture rates typically show nearly ten-fold reductions in the yield of 17O (e.g., Rauscher et al. 2002). This in turn suggests that other sites, particularly AGB stars with hot bottom burning and novae play a significant, if not dominant, role in the synthesis of this isotope. Nevertheless, as in the massive star models, the production of 17O is secondary in these other sites (e.g., Romano and Matteucci 2003).

Despite this caveat on Figure 4, it is worth pointing out that it was produced by the online Clemson University Galactic Chemical Evolution (CUGCE) Tool available at http://webnucleo.org. With this tool, the interested user may explore the primary vs. secondary nature of many other isotopes from massive stars.

With these basics in mind, the Galactic evolution of the abundances of the oxygen isotopes is now easy to understand. The high entropy of the Universe allowed primordial nucleosynthesis to produce only helium and trace amounts of lithium, beryllium, and boron from the initial soup of neutrons and protons. The initial composition of the first generation of stars, then, was devoid of C, N, and O, and as a consequence, produced little 17O and 18O but normal amounts of 16O. As the Galaxy evolved, the succeeding generations of stars formed from interstellar medium that had initial compositions enriched in “metals” from previous generations. These stars were then able to produce increasingly large amounts of 17O and 18O.

This behavior is evident in Figure 5, which shows a one-zone model of the evolution of the oxygen abundances in the Galaxy. Like Figure 4, Figure 5 was produced from the online CUGCE Tool at http://webnucleo.org (for a description, see Meyer, Denny and Clayton 2001). The model followed a single zone in the Galaxy, used the instantaneous recycling approximation, and employed Clayton’s family of analytic Galactic infall models (Clayton 1984). Figure 5 shows the mass fraction of oxygen isotopes in the interstellar gas, normalized to their mass fraction at the time of Solar System formation in the model. The behavior of 16O is distinctly different from that of 17O and 18O in the Figure. Because 16O is a primary isotope, each generation of stars ejects about the same number of grams of 16O per gram of mass going into stars; thus, the gas becomes enriched in 16O in a linear fashion. In contrast, 17O and 18O are secondary isotopes; therefore, the number of grams of these isotopes ejected per gram going into stars increases with each generation. This gives rise to the quadratic evolution seen in Figure 5. At the time of Solar System formation, the oxygen isotopes all reached their solar values in the Galaxy.

The Galactic chemical evolution presented in Figure 5 is a simplification given the fact that the model contains only a single zone and uses the instantaneous recycling approximation—the real Galaxy is an inhomogeneous mix of different interstellar phases and stars have finite lifetimes. Nevertheless, the general trend of increasing 17O and 18O...
relative to ^{16}O in the evolution of the Galaxy is quite evident from astronomical data. In particular, stars that formed recently in the local stellar neighborhood show a lower $^{16}\text{O}/^{17}\text{O}$ ratio than the solar value, which indicates the ratio has declined over the last 4.5 Gyr, as expected from Galactic chemical evolution (e.g., Wilson and Rood 1994). As for ^{18}O, the $^{18}\text{O}/^{16}\text{O}$ ratio decreases inwards from the Sun’s position in the Galaxy. Since the inner part of the Galaxy is thought to be more chemically evolved than the outer regions, this supports a secondary nature of ^{18}O.

Despite this agreement between observations and Galactic chemical evolution expectations for oxygen, there are two significant puzzles. The first is that the solar $^{16}\text{O}/^{18}\text{O}$ ratio is actually less than that in today’s interstellar medium in the local solar neighborhood (Wilson and Rood 1994). This is not expected since the $^{16}\text{O}/^{18}\text{O}$ ratio should decline in the Galaxy with time. The second puzzle is that the $^{18}\text{O}/^{17}\text{O}$ ratio in today’s interstellar medium is about 3.5, which is significantly less than the solar value of 5.2. From Figure 5, one would expect this ratio to be little changed since the time of the Sun’s formation.

A proposed solution to the “^{18}O puzzle” is that the Sun formed in an association of high-mass stars, a so-called “OB association”. In such a stellar association, the high-mass stars evolve, explode, and self enrich the cluster. Since the high-mass stars preferentially eject ^{16}O and ^{18}O, the $^{18}\text{O}/^{16}\text{O}$ and $^{18}\text{O}/^{17}\text{O}$ ratios can grow over the course of a \sim10-20 Myr period of the association’s evolution (e.g., Prantzos et al. 1996). This means that the Sun would have formed with higher values for these ratios than the ambient interstellar medium from which the entire association itself formed.

D. D. Clayton has proposed an alternative scenario. It is based on his idea (Clayton 2003) for origin of the silicon isotopes in presolar silicon carbide grains (see Sec. IV) in which the absorption of a metal-poor satellite galaxy (like the Magellanic Clouds) by the Milky Way initiated a burst of star formation. The number of AGB stars formed during this starburst exceeded that formed by normal Galactic star formation, so the former stars contributed the bulk of the SiC in this period. Since the parent composition of these AGB stars was a mix of the evolved Milky Way Galaxy and the metal-poor satellite, the silicon isotopes in the SiC grains from these stars essentially lie on a mixing line between these two initial compositions. In this scenario, the Sun itself formed with a composition relatively close to the metal-poor satellite; thus, most SiC grains have a silicon composition that looks more evolved than solar.

This scenario has interesting implications for the ^{18}O puzzle (Clayton 2004). In particular, immediately after the merger, high-mass stars quickly evolved and enriched the interstellar medium with ^{16}O and ^{18}O but not ^{17}O, which had to wait for the low-mass stars to evolve. The Sun formed during this period of enriched ^{16}O and ^{18}O with an $^{18}\text{O}/^{17}\text{O}$ ratio of 5.2. Over the course of the last 4.5 Gyr, however, low-mass stars formed during the starburst returned their ^{17}O enriched matter and lowered the interstellar $^{18}\text{O}/^{17}\text{O}$ ratio to its present value of 3.5. Clayton (2004) points out that a consequence of this scenario would be a correlation between $^{18}\text{O}/^{16}\text{O}$ and $^{17}\text{O}/^{16}\text{O}$ and the $^{30}\text{Si}/^{28}\text{Si}$ in presolar SiC grains. While details of this scenario need to be worked out, it is a nice
illustration of oxygen at the nexus of nuclear physics, stellar evolution, Galactic astronomy, and presolar grains.

IV. OXYGEN IN PRESOLAR GRAINS

Presolar grains are rare and small (nm to 10 µm) mineral inclusions recovered from primitive meteorites and interplanetary dust particles (IDPs; <50 µm meteorites collected by aircraft in Earth’s stratosphere). The presence of presolar grains in primitive meteorites was first inferred in the 1960’s as the carriers of anomalous noble gas patterns, but they were not successfully isolated until 1987 (Anders et al. 1987, Bernatowicz et al. 1987, Zinner et al. 1987). The isotopic abundances of many elements in individual presolar grains can be measured to high accuracy with secondary ionization mass spectrometry (SIMS) or resonance ionization mass spectrometry (RIMS), and the highly anomalous results unequivocally show that these objects must have condensed in stellar outflows. For recent reviews, please see Clayton and Nittler (2004) and Zinner (2003).

Despite oxygen’s prevalence over carbon in the Universe, most presolar grains studied to date are carbonaceous. This does not reflect a paucity of O-rich stardust in the Galaxy or Solar System, especially given the dominance of silicates in the interstellar dust population (Kemper et al. 2004). Rather, it is due to the fact that the O-rich stardust is embedded within an overwhelming background of isotopically normal and mineralogically similar O-rich phases that make up the bulk of meteoritic materials. Initial searches for presolar silicates were unsuccessful due to their fine grain size and the high background. A recently introduced ion microprobe (the Cameca NanoSIMS) and a newly developed imaging system for the Cameca 1270 ion probe have overcome these limitations, now enabling in situ searches for presolar grains by sub-µm spatial resolution imaging of the oxygen isotopes. Such techniques led first to the discovery of circumstellar silicate grains in anhydrous interplanetary dust particles (Messenger et al. 2003). This was followed by discovery of presolar silicates in primitive meteorites (Nguyen and Zinner 2004; Mostefaoui and Hoppe 2004; Nagashima et al. 2004). The abundance of presolar silicates is greater than that of any other presolar meteoritic phase, with the possible exception of the highly abundant (but more enigmatic) nanodiamonds (Nguyen et al. 2006).

Oxygen in Carbonaceous Grains

Of the carbonaceous grains identified to date, the most common types are silicon carbide (SiC), graphite, and nanodiamonds. Oxygen occurs in these grains as a trace element and its isotopic composition has only been measured in graphite grains (Amare et al. 1995). The oxygen in presolar graphite grains of relatively low density is characterized by 18O excesses, which points to formation of these grains in the outflows from massive stars. Moreover, other signatures, especially 28Si enrichments and evidence for condensation of live 44Ti, point to a supernova origin (Nittler et al. 1996). The 18O enrichment is from the helium shell (He/C zone) of the ejecta, whereas the 28Si and 44Ti must have originated from the inner, oxygen-rich, regions of the ejecta, indicating significant and heterogeneous mixing of different mass zones prior to grain formation.
The difficulty with this scenario is in mixing the stellar zones without obtaining an overall C/O ratio less than unity. In equilibrium chemistry, when C/O < 1, all carbon is locked up into the tightly bound CO molecule, which thereby inhibits growth of carbonaceous dust.

A possible solution to the problem of growing carbonaceous dust in an oxygen-rich environment is that radioactivity from the supernova may inhibit the build up of CO (Clayton et al. 1999). As carbon atoms associate into carbon chains in this scenario, oxidation is also breaking down these chains. Surprisingly, this destruction allows large carbonaceous dust to form as relatively few carbon nucleation sites survive and grow by absorbing the remaining carbon (Deneault et al. 2006). The chemistry of carbon in the oxygen-rich supernova ejecta is rather complex, especially given the complicated nature of the growing carbon chains and rings, and further studies represent an interesting frontier in supernova physics.

Presolar Oxide and Silicate Grains

A large number of presolar O-bearing grains have now been identified in meteorites and IDPs. There is still limited information on the mineralogy of most identified presolar silicates, but Fe-rich and Fe-poor olivine and pyroxene have been found, as well as several non-stoichiometric (and in some cases amorphous) silicate phases. Identified oxide minerals include presolar grains of Al₂O₃ (both in the crystalline corundum form and in an amorphous form, Stroud et al. 2004), spinel (MgAl₂O₄), hibonite (CaAl₂O₁₉), TiO₂ and Cr-rich spinel. Figure 6 shows the O isotopic ratios of the different types of presolar O-rich grains. For purposes of discussion, the four grain Groups defined by Nittler et al. (1994; 1997) are indicated as well.

Group 1 grains (making up 64% of all presolar oxides and silicates) are typically strongly enriched in ¹⁷O and have normal or modestly depleted ¹⁸O, relative to Solar materials. This indicates formation of these grains in stellar outflows from red giant stars after first dredge up (and second dredge up for sufficiently massive stars) has cycled CNO-processed material to the stellar envelope (see section II). The distribution of O isotopes in Group 1 grains are in good agreement with the much less precise observational data for O-rich red giants (e.g., see comparison in Nittler et al., 1997). Variations in the ¹⁷O/¹⁶O ratio in these grains are thought to be due to variations in the mass of the parent stars. In contrast, variations in ¹⁸O/¹⁶O are too large to be explained by dredge-up models, and probably indicate a range of initial compositions due to Galactic chemical evolution (Boothroyd et al. 1994; see Section III). We note that red supergiants are also predicted (and observed, e.g., Harris and Lambert 1984) to have surface ¹⁷O enrichments and are thus an alternative source for some Group 1 grains. Assuming that supergiants have ¹⁷O/¹⁶O ratios in the range of 0.9–1.7×10⁻³ (Nittler et al. 1997), we estimate that, at most, about 10-15% of presolar oxides and silicates could have formed in red supergiants. This is in good agreement with many estimates of relative dust production rates of different stars (e.g., Tielens 2005), but not all estimates (Kemper et al. 2004).
Group 2 grains (15% of all grains) show 17O excesses and strong 18O depletions. These isotopic patterns cannot be explained by first or second dredge up—rather, they are best accounted for by extra mixing of material below the base of the standard convective envelope and subsequent “cool bottom CNO processing” (see section II). One extreme Group 2 spinel grain most likely originated in an intermediate-mass AGB star undergoing hot bottom burning (Lugaro et al. 1996). Group 3 grains (12% of all grains) are slightly enriched in 16O. It may be that these grains formed in stars of low metallicity since, as we saw in section III, 17O and 18O are secondary isotopes, and their abundances relative to 16O have been growing with increasing Galactic age. Finally, the Group 4 grains (8% of all grains) have moderate 17O and 18O enrichments. Proposed origins of these grains include formation in stars in which third dredge up of early pulse-processed material enriched the envelope 18O composition, formation in stars with higher than solar metallicity, and supernovae.

Some exceptional grains clearly lie outside the 4 Groups defined by Nittler et al (1994, 1997). A few oxide and silicate grains, the most extreme being Al$_2$O$_3$ grain T54, have 17O/16O ratios higher than the maximum value of $\approx 5 \times 10^{-3}$ predicted for dredge-up in AGB stars (Boothroyd and Sackmann 1999) as well as normal to moderately depleted 18O abundances. A hot bottom burning origin was previously suggested for grain T54 (Nittler et al. 1997), but this seems unlikely in light of calculations indicating extreme 18O depletions from this process (e.g., Lugaro et al. 2006). Possibly, grain T54 and the other highly 17O-enriched grains originated in AGB stars and their compositions indicate a problem with the current dredge-up models (e.g., uncertain reaction rates). Alternatively, these grains have compositions approaching some calculations of nova ejecta, especially novae occurring on low-mass carbon-oxygen white dwarfs (José et al. 2004). Other outliers from the Groups include a few silicate and Al$_2$O$_3$ grains have 17O depletions, but roughly normal 18O/16O ratios. These are difficult to understand in terms of dredge-up processes in low- or intermediate-mass stars, since they have 17O/18O ratios lower than solar, but the CNO cycles only increase the 17O/18O ratio. It is possible they formed in stars with unusually low initial 17O/18O ratios, perhaps due to heterogeneous mixing of supernova ejecta in the interstellar medium (e.g., Lugaro et al 1999, Nittler 2005).

Of particular interest are Al$_2$O$_3$ grain T84, olivine grain B10A, and a few grains with large 18O excesses and close to normal 17O/16O ratios (Figure 6). Although these grains have a wide range of compositions, they all likely formed in Type II supernovae. Grain T84 (Nittler et al. 1998) is extremely enriched in 16O, strongly suggesting an origin in the 16O-rich supernova zones, with little mixing with the 18O-rich and/or 17O-rich outer layers of the ejecta (cf. Figure 3). Choi et al. (1998) suggested a supernova origin for the 18O-enriched Al$_2$O$_3$ grain S-C122. The O composition of this grain and two silicate grains with similar composition (Mostefaoui and Hoppe 2004; Stadermann et al. 2006) can be explained, at least qualitatively, by mixing of helium-shell (He/C zone, Section II) material with the H envelope, with little or no contribution from the inner 16O-rich zones. One of the 18O-rich silicates also shows an Fe isotope anomaly consistent with a supernova origin (Mostefaoui and Hoppe 2004). Recently, Messenger et al. (2005) have reported the discovery of an olivine grain (B10A) with a very strong enrichment in 18O and a significant depletion in 17O in an IDP. The grain is also modestly enriched in 28Si.
This isotopic pattern is reminiscent of that in low-density presolar graphite grains and similarly suggests a supernova origin. As with the graphite grain compositions, this silicate grain’s composition can only be understood if various zones of the supernova ejecta are somehow mixed prior to grain condensation. Moreover, the chemical composition of the grain is that predicted by equilibrium condensation from a gas with composition given by the supernova zone mixture that quantitatively reproduces its isotopic composition. This suggests that despite the extreme conditions present in supernova ejecta, equilibrium thermodynamics might play a role in supernova dust condensation.

The well-preserved structure of B10A also has interesting implications for its transit in the interstellar medium (ISM). The grain has a coating of carbonaceous material. The coating has a ^{15}N excess which probably signals an origin in a low-temperature molecular cloud environment where chemical reactions give rise to such nitrogen isotopic fractionation. This coating may have protected the grain from the destructive processing that occurs in much of the interstellar medium, which is warm or even hot. On the other hand, the coating’s isotopic signature suggests it may not have been present during grain transit from the parent star to the Solar nebula. If this is the case, B10A would have to have had a short residence time in the ISM. Messenger et al. (2005) suggest that B10A may have formed in an exploding star from the same molecular cloud in which the Sun formed.

We note that only a small fraction of the presolar oxide and silicate grains apparently originated in supernovae (at most about 9%, if most Group 4 grains are from supernovae). This is consistent with presolar SiC grains, >90% of which are believed to have formed in C-rich AGB stars and only 1% from supernovae. Some recent studies of cold dust in supernova remnants suggest that supernovae are much more prodigious dust producers than previously believed (e.g., Dunne et al. 2003). However, other studies have questioned these results (Dwek 2004; Krause et al. 2004) and the presolar grain evidence indicates that supernovae were a relatively minor contributor to dust in the Galaxy at the time that the Solar System formed.

Finally, we note that presolar grains are identified by virtue of having highly anomalous isotopic compositions, relative to the range of materials known to have formed in the Solar System. However, this is essentially an operational definition, and analytical uncertainty plays a significant role in deciding whether any given grain is demonstrably a stellar condensate. That is, searches for presolar oxides and/or silicates generally involve the measurement of large numbers of grains, and grains whose isotopic compositions are significantly different (e.g. 3 σ) from the rest are defined to be presolar. Figure 7 shows the O isotopic compositions (expressed as delta-values, see caption for definition) of many of the presolar grains. Also shown as small ellipses near the origin is the range of O isotopes measured with high precision in meteoritic materials. The grey shaded ellipse illustrates schematically the region of the plot for which analytical uncertainty on small grain measurements has excluded identification of presolar grains. Almost certainly, as analytical methods improve, this region will get smaller and grains with less extreme composition will be defined as presolar. However, it is possible that
some presolar grains have isotopic compositions similar to the solar values. One source of such grains may have been other young stars in the molecular cloud from which the Solar System formed. Young stars are observed to eject prodigious amounts of materials in bipolar outflows, and the Sun’s stellar neighbors should have had isotopic compositions close to solar values. In any case, we merely wish to emphasize that establishing the true limits of presolar grain isotopic compositions (if any) is an important topic for future research.

V. CONCLUDING REMARKS

The early studies of presolar materials focused on carbonaceous dust because nanodiamonds, SiC, and graphite were the phases that survived the harsh chemical treatment needed to isolate presolar material. Furthermore, the large sizes of some presolar carbonaceous dust tended to make them easier to identify and characterize isotopically than oxide grains. Advances in the sensitivity and spatial resolution of isotopic imaging capabilities of SIMS instruments have made it easier to find and study presolar oxides and silicates in situ, especially those of submicron size. As we have seen above, such advances have already significantly enhanced our knowledge of stellar evolution by constraining mixing in supernova ejecta and cool bottom processing and hot bottom burning in red giant branch stars. And we anticipate study of oxygen-rich presolar matter will continue to reward us with insights into issues such as chemistry in supernova debris (for example, low-density graphite), chemical evolution (for example, the possible origin of the Group 4 oxide grains), and transit times of dust through the interstellar medium and conditions in the Sun’s parent molecular cloud (for example, presolar silicates in IDPs). Such rich rewards are only fitting for the oxygen, the king of the strictly stellar synthesized elements.

ACKNOWLEDGMENTS

The authors would like to thank the organizers, particularly Glenn MacPherson, for the stimulating 2005 O in the Early Solar System workshop in Gatlinburg. BM, LRN and SRM all acknowledge NASA’s Cosmochemistry program for financial support of this work.

References

Figure 1. Evolution of the mass fractions of the indicated species during hydrogen burning at a temperature of 3×10^7 K and 10 g/cm3.
Figure 2. Evolution of the mass fractions of the indicated species during helium burning at a temperature of 2.5×10^8 K and a density of 1.0×10^3 g/cm3.
Figure 3. Final mass fractions (after stellar explosion) of the isotopes of oxygen relative to solar in a one-dimensional stellar model of an initially 25 solar mass star as a function of Lagrangian mass coordinate M_r. The final stellar mass was 21.6 solar masses, and the abundances are uniform from $M_r = 7.8$ to 21.6 solar masses (the surface).
Figure 4. Yields of O isotopes from stellar models of different initial metallicity and mass from Woosley and Weaver (1995).
Figure 5. Mass fraction of the isotopes in the interstellar gas in a chemical evolution model as a function of time. The mass fractions are normalized to their values at the time of Solar System formation (roughly 9.5 Gyrs in the present model).
Figure 6. O isotopic ratios of presolar oxides and silicates found in meteorites and interplanetary dust particles. Dotted lines indicate Solar isotopic ratios (assumed to be terrestrial). Ellipses indicate grain Groups defined by Nittler et al. (1994, 1997). Data sources: Huss et al. (1994); Nittler et al. (1994, 1997, 2005a, 2005b); Choi et al., (1998,1999); Messenger et al. (2003); Zinner et al. (2003, 2005); Mostefaoui et al. (2004); Nguyen et al. (2004); Stadermann et al. (2005).
Figure 7. O isotopic ratios of presolar oxides and silicates, expressed as δ-values: $\delta^{18}O = 10^3 \times \left[\left(\frac{^{18}O}{^{16}O} \right)_{\text{grain}} / \left(\frac{^{18}O}{^{16}O} \right)_{\text{Terrestrial}} - 1 \right]$. Dotted lines indicate solar isotopic ratios (assumed to be terrestrial). Solid ellipses near origin indicate range of high-precision isotopic measurements of Solar System-derived meteoritic materials. Grey shaded ellipse indicates region in which analytical errors preclude identification of presolar grains. See Fig. 6 for data sources.